SYNTHESIS AND REDOX BEHAVIOR OF [Mo(2,4,6-TRIALKYLBENZENETHIOLATO)₄]. UNIQUE REDOX PROPERTIES OF TETRA-COORDINATED Mo(IV) COMPLEXES WITH BULKY THIOLATES

Norikazu UEYAMA, Hiroaki ZAIMA, and Akira NAKAMURA*

Department of Macromolecular Science, Faculty of Science, Osaka
University, Toyonaka, Osaka 560

Two new molybdenum(IV) complexes having bulky thiolato ligands, [Mo(2,4,6-trimethylbenzenethiolato)₄] and [Mo(2,4,6-triisopropylbenzenethiolato)₄], were synthesized. These complexes show paramagnetic properties due to a nearly tetrahedral coordination and exhibit the quasi-reversible redox couples of Mo(V)/Mo(IV) at -0.07 V and +0.47 V vs. SCE, respectively in 1,2-dimethoxyethane. The two bulky isopropyl groups at o-position prevent π -interaction between Mo(IV) and sulfur, providing an ionic character at the Mo-S bond and stabilizing Mo(IV) state against oxidation.

The molybdenum(IV) species coordinated with sulfur-donor ligands are important for its relevance to the Mo center of nitrogenase. However, apart from 8-coordinated dithiocarbamates, [Mo(dtc)_4], such complexes with 4 - 6 coordinated structure have been scarce. Recently, on the basis of EXAFS study Mo ion in FeMo-cofactor is proposed to be surrounded by three oxo (or N) and three sulfur ligands and exists in hydrophobic environments. Otsuka et al. reported the synthesis of highly air sensitive [Mo(S- \underline{t} -Bu)_4] and found to have a D_{2h} structure. The study of [Mo(S- \underline{t} -Bu)₂(Z-Ala-cys-OMe)₂] (Z = benzyloxycarbonyl) and [Mo(Z-cys-Ala-Ala-cys-OMe)₂] indicated their remarkably modified reactivity compared with that of [Mo(S- \underline{t} -Bu)₄] due to the bulk of the peptide. Recently, some metal complexes having such bulky ligands were found to exhibit unusual stability in the oxidized state, e.g. [Fe(2,3,5,6-tetramethylbenzenethiolato)₄]^{-,6} [Fe₄S₄(2,4,6-triisopropylbenzenethiolato)₄]^{2-,7}

[Mo(tmbt)₄] (tmbt = 2,4,6-trimethylbenzenethiolato) (1) was synthesized from [MoCl₄(thf)₂] and Na(tmbt) in 1,2-dimethoxyethane (DME) under argon atmosphere as black needles, mp 150 °C (decomp). Found: C, 61.5; H, 7.5%. Calcd for $C_{36}H_{44}S_{4}Mo$: C, 61.7; H, 6.3%. The complex is extremely succeptible to air and moisture and, paramagnetic (μ_{eff} = 2.6 BM in solution)⁸⁾ and exhibits an absorption maximum at 340, 400(sh), 530 (ϵ 1900 M⁻¹cm⁻¹), and 820 nm (ϵ 60) in DME. 1 can be regarded as being monomeric and having not the same D_{2h} structure as that of dimagnetic [Mo(S- \underline{t} -Bu)₄], but a nearly tetrahedral structure. The steric hindrance of methyl groups at \underline{o} -position in the phenyl group prevents a π -interaction between Mo(IV) and sulfur, resulting in formation of the nearly tetrahedral structure. In the cyclic voltammogram, 1 exhibited a quasi-reversible redox couple ($E_{1/2}$ = -0.07 V vs. SCE)

in DME as shown in Fig. 1, which is due to the redox couple of Mo(V)/Mo(IV). Such a stable redox couple caused by the sterically demanding ligands seems to be quite unusual in view of irreversible redox couples of Mo(IV) complexes with conventional ligands.

[Mo(tipbt)₄] (tipbt = 2,4,6-tri-isopropylbenzenethiolato) (2), which has more bulky thiolato ligands, was synthesized from [MoCl₄(thf)₂] and Na(tipbt) by the same method described above. 2 is paramagnetic (μ_{eff} = 2.6 BM in solution) and less susceptible against air and moisture, mp 149 °C (decomp). Found: C, 69.46; H, 8.95%. Calcd for C₆₀H₉₂S₄Mo: C, 69.46; H, 8.94%. It has an absorption maximum at 558 nm (ϵ 1600) and a quasi-reversible redox couple at +0.32 V vs. SCE in DME (Fig. 1). The remarkable

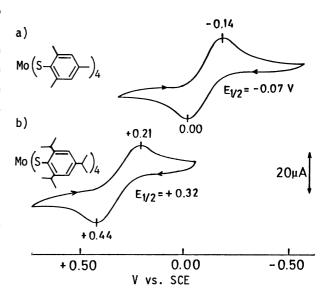


Fig. 1. Cyclic voltammograms of Mo(V)/Mo(IV) couple of a) [Mo(tmbt)₄] and b) [Mo(tipbt)₄] in DME solution (0.1 M $(\underline{n}$ -Bu)₄NC10₄) at a carbon electrode and scan rate 100 mV s⁻¹.

difference of redox potentials between 1 and 2 presumably arises from the ionic character of Mo-S in 2 having no appreciable π -interaction between Mo(IV) and sulfur. Such an ionic character was also observed in $[\text{Fe}_4\text{S}_4(2,4,6\text{-trimethyl-benzenethiolato})_4]^{2-}$ where similar steric interaction has been verified by X-ray analysis.

References

- S. P. Cramer, K. O. Hodgson, W. O. Gillum, and L. E. Mortenson, J. Am. Chem. Soc., <u>100</u>, 3398 (1978).
- A. Nieuwpoort and J. J. Steggerda, Recl. Trav. Chim. Pays-Bas, <u>95</u>, 250 (1976);
 D. A. Smith and F. A. Schultz, Inorg. Chem., <u>21</u>, 3035 (1982);
 J. Hyde and J. Zubieta, J. Inorg. Nucl. Chem., <u>39</u>, 289 (1977).
- 3) B. K. Burgess, "Advances in Nitrogen Fixation Research," ed by C. Veeger and W. E. Newton, Nijnoff/Junk Pudoc, The Netherlands (1984), pp. 103-114.
- 4) S. Otsuka, K. Kamata, K. Hirotsu, and T. Higuchi, J. Am. Chem. Soc., <u>103</u>, 3011 (1981).
- 5) N. Ueyama, M. Nakata, A. Nakamura, M. Kamata, and S. Otsuka, Inorg. Chim. Acta, 80, 207 (1983).
- 6) M. Millar, J. F. Lee, S. A. Koch, and R. Fikar, Inorg. Chem., 21, 4106 (1982).
- 7) N. Ueyama, T. Terakawa, T. Sugawara, M. Fuji, and A. Nakamura, Chem. Lett., 1984, 1287.
- 8) The reproducibility of the magnetic susceptibility measured in CD_3CN solution was invariably poor because of the instability of 1 in air.

(Received July 1, 1985)